
BRIDGING THE GAP BETWEEN BASIC NEURAL LANGUAGE 
MODELS, TRANSFORMERS, AND MEGATRON
MAGNUS EKMAN, PH.D., DIRECTOR ARCHITECTURE

JARED CASPER, PH.D., SENIOR DEEP LEARNING SCIENTIST



AGENDA

Basic neural language models and autoregression

Encoder-decoder network for language translation

The attention mechanism

The Transformer, GPT, and BERT

Scaling transformer models with Megatron



PREDICTING SEQUENTIAL DATA
Using a recurrent neural network (RNN)



UNROLLING A RECURRENT NETWORK IN TIME
Converts it into a feedforward network



LONG SHORT-TERM MEMORY
Drop-in replacement for simple unit in RNN

▪ Gated units

▪ More weights to train

▪ Better at capturing long-term dependencies



NETWORK LAYERS USED FOR WORD 
INPUT/OUTPUT

▪ Input: Embedding layer

▪ Output: Softmax



BASIC NEURAL LANGUAGE MODELS AND 
AUTOREGRESSION



WHAT IS A LANGUAGE MODEL?

▪ Example use-case: Text autocompletion

▪ Likelihood of sequence depends on training data

A model that describes how likely a sequence of words is

Language model

“Deep Learning”

Probability for each word in the vocabulary

Input sequence

Word Probability

Book High

Model High

… ...

Food Low

travel Low



MORE LANGUAGE MODEL USE CASES

Which translation is most likely for
"Je suis étudiant"?

"I am student“

"I am a student"

"Student am I"

"A student I am"

Speech recognition – what did they say?

"Recognize speech using common sense"

"Wreck a nice beach you sing calm incense"



WHAT IS AN N-GRAM?
n consecutive words from a body of text

Training Text

“The more I read, the more 

I learn, and I like it more 

than anything else.”

n-grams with n=2

/the more/ /more i/ /i read/ /read the/ /the more/ 

/more i/ /i learn/ /learn and/ /and i/ /i like/ /like it/ 

/it more/ /more than/ /than anything/ /anything else/



PREDICT NEXT WORD WITH 2-GRAM MODEL

First word Predicted word # of occurences Probability given starting word

and i 1 100%

anything else 1 100%

i

learn 1 33%

like 1 33%

read 1 33%

it more 1 100%

learn and 1 100%

like it 1 100%

more
i 1 67%

than 2 33%

read the 1 100%

than anything 1 100%

the more 2 100%



NEURAL LANGUAGE MODELS
Fixed or variable length



AUTOREGRESSION
Dynamically generate input sequence

Predict 

probabilities of 

next word

Feed most probable 

word back as input



AUTOREGRESSION EXAMPLE

1. Input: “Deep” → Prediction: “learning”

2. Input: “learning" → Prediction: “is"

3. Input: “is” → Prediction: “awesome”

Result: “Deep learning is awesome”



ENCODER/DECODER NETWORK FOR 
LANGUAGE TRANSLATION



LANGUAGE TRANSLATION

▪ View it as a text autocompletion problem

▪ Training sequence: “je suis étudiant START i am a student STOP”

▪ Now complete the sequence “je suis étudiant START”

▪ Just use a neural language model!

French: je suis étudiant

English: i am a student



LANGUAGE MODEL APPROACH



ENCODER/DECODER NETWORK

▪ Encoder encodes French sentence into an intermediate 
representation

▪ Decoder decodes this intermediate representation into 
an English sentence

▪ The decoder is just a neural language model

▪ Encoder embedding layer works with French words and 
decoder works with English words



THE ATTENTION MECHANISM



WHY ATTENTION?
Let’s translate this “brief” sentence

▪ In my opinion, this second hypothesis would imply the failure of Parliament in its duty as a 
Parliament, as well as introducing an original thesis, an unknown method which consists of 
making political groups aware, in writing, of a speech concerning the Commission’s 
programme a week earlier—and not a day earlier, as had been agreed—bearing in mind that 
the legislative programme will be discussed in February, so we could forego the debate, 
since on the next day our citizens will hear about it in the press and on the Internet and 
Parliament will no longer have to worry about it.

▪ (Source: Europarl dataset)

In my opinion, 
this second 
hypothesis 
would imply 
the failure of 
Parliament in 
its duty as a 
Parliament, as 
well as 
introducing an 
original 
thesis, an 
unknown 
method which 
consists of 
making 
political 
groups aware, 
in writing, of 
a speech 
concerning the 
Commission’s 
programme a 
week earlier—
and not a day 
earlier, as had 
been agreed—
bearing in 
mind that the 
legislative 
programme
will be 
discussed in 
February, so 
we could 
forego the 
debate, since 
on the next 
day our 
citizens will 
hear about it 
in the press 
and on the 
Internet and 
Parliament 
will no longer 
have to worry 
about it.



RICHER INTERMEDIATE REPRESENTATION
Let the decoder decide what to attend to



SOFT ATTENTION
For now, ignore how alignment vector is computed



ATTENTION EXAMPLE

▪ French: L'accord sur la zone économique européenne a 
été signé en août 1992.

▪ English: The agreement on the European Economic 
Area was signed in August 1992.



▪ Encoder produces one state vector 
for each input word

▪ Decoder creates an alignment vector 
for each output word

▪ Input to decoder is the weighted 
sum of encoder state vectors, where 
alignment vector serves as weights

TRANSLATION NETWORK WITH 
ATTENTION



THE TRANSFORMER, GPT, AND BERT



THE TRANSFORMER

▪ Encoder/decoder network with attention

▪ Encoder and decoder additionally use multi-headed 
self-attention

▪ No recurrent layers

▪ Decoder uses autoregression



SELF-ATTENTION

▪ In traditional attention the decoder attends to output 
of the encoder

▪ In self-attention a layer attends to the output of the 
preceding layer

▪ An important difference is what data is used to 
compute the weights



MULTI-HEADED SELF-ATTENTION



PUTTING IT ALL TOGETHER

Building blocks The Transformer



GPT

Model based on Transformer decoder

Pre-trained as language model

Fine-tuned for other NLP tasks in end 

application

Generative Pretraining with Transformers



GPT
Pre-training



GPT
Fine-tuning for similarity task



BERT
Bidirectional Encoder Representations from Transformers

Model based on Transformer encoder

Pre-trained as masked language model and 

next-sentence prediction



SCALING TRANSFORMER MODELS WITH 
MEGATRON



PARALLEL TRAINING

Device 2Device 1

Single copy of model parameters

Device 2

Device 1

Device 1 Device 2

𝑛 copies of model 
parameters

Data Parallelism (DP) Model Parallelism (MP)

Tensor MP Pipeline MP



DATA PARALLELISM

•All-reductions of weight gradients after every iteration

•Model size limited by device memory – Worked through GPT-2 ~2 years ago
•Cannot be used in isolation for large models

•Parallelism limited by batch size
•Too much data at a time leads to inefficient steps

Device 1 Device 2 Device 3 Device 4



TENSOR MODEL PARALLELISM

[1] Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, arXiv:1909.08053, Shoeybi et al.

Each layer of model is partitioned over multiple devices

𝑔 → All-reduction (𝑌1𝐵1 + 𝑌2𝐵2) in forward pass

G
e

L
U

G
e

L
U

D
ro

p
o

u
t

𝑌 = GeLU(𝑋𝐴) 𝑍 = Dropout(𝑌𝐵)

𝐴 = [𝐴1, 𝐴2] 𝐵 =
𝐵1
𝐵2

𝑌1

𝑌2

𝑋𝐴1

𝑋𝐴2

𝑋

𝑋

𝑓𝑋

𝑌1𝐵1

𝑌2𝐵2

𝑔 𝑍

𝑍1

𝑍2

Slow across inter-server communication links



MODEL PARALLELISM
Pipeline (Inter-Layer) Parallelism

Split sets of layers across multiple devices

Layer 0,1,2 and layer 3,4,5 are on difference devices

▪Tensor (Intra-Layer) Parallelism

▪Split individual layers across multiple devices

▪Both devices compute difference parts of Layer 0,1,2,3,4,5

▪Pipeline (Inter-Layer) Parallelism

▪Split sets of layers across multiple devices

▪Layer 0,1,2 and layer 3,4,5 are on difference devices



1

1

1

1 1

1a 1a

1a 1a

1a 1a

1a 1a

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4

Time

Time

Split batch into microbatches
and pipeline execution

PIPELINING



1a 1b 1a 1b

1a 1b 1a 1b

1a 1b 1a 1b

1a 1a 1b 1b

1

1

1

1 1

Split batch into microbatches
and pipeline execution

PIPELINING

Time

Time

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4



1a 1b 1c 1a 1b 1c

1a 1b 1c 1a 1b 1c

1a 1b 1c 1a 1b 1c

1a 1a 1b 1b 1c 1c

1

1

1

1 1

Split batch into microbatches
and pipeline execution

PIPELINING

Time

Time

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4



1a 1b 1c 1d 1a 1b 1c 1d

1a 1b 1c 1d 1a 1b 1c 1d

1a 1b 1c 1d 1a 1b 1c 1d

1a 1a 1b 1b 1c 1c 1d 1d

1

1

1

1 1

Split batch into microbatches
and pipeline execution

PIPELINING

Time

Time

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4



1a 1b 1c 1d 1a 1b 1c 1d 2a 2b

1a 1b 1c 1d 1a 1b 1c 1d 2a

1a 1b 1c 1d 1a 1b 1d 1d

1a 1a 1b 1b 1c 1c 1d 1d

1

1

1

1 1

Split batch into microbatches
and pipeline execution

PIPELINING

Time

Time

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4



PIPELINE BUBBLES

44

GPU 1 1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 7 8 9

GPU 2 1 2 3 1 4 2 5 3 6 4 7 5 8 6 9 7 8 9

GPU 3 1 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 9

GPU 4 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Time



DIFFERENT SCHEMES HAVE DIFFERENT TRADEOFFS

▪ Naïvely combining parallelism dimensions leads to poor throughput

▪ Using parallelism efficiently thus requires one to reason through the interactions between different parallelism modes

▪ Each parallelism mode makes tradeoffs, and determining the optimal degrees of parallelism requires reasoning through these 
tradeoffs

162B GPT model
64 80-GB A100 GPUs

All-reductions for tensor MP across servers

Pipeline bubble large



MORE EFFICIENT PIPELINE SCHEDULES

1 2 3 4 1 2 3 4 5 6 7 1 8 2 5 3 6 4 7 1 8 2 3 4 5 6 7 8 5 6 7 8 9
1
0

1
1

1
2

9
1
0

1
1

1
2

1
3

1
4

1
5

9
1
6

10
1
3

11
1
4

12
1
5

9
1
6

10 11

1 2 3 4 1 2 3 4 5 1 6 2 7 3 8 4 5 1 6 2 7 3 8 4 5 6 7 8 5 6 7 8 9
1
0

1
1

1
2

9
1
0

1
1

1
2

1
3

9
1
4

10
1
5

11
1
6

12
1
3

9
1
4

10
1
5

11
1
6

12

1 2 3 4 1 2 3 1 4 2 5 3 6 4 7 1 8 2 5 3 6 4 7 5 8 6 7 8 5 6 7 8 9
1
0

1
1

1
2

9
1
0

1
1

9
1
2

10
1
3

11
1
4

12
1
5

9
1
6

10
1
3

11
1
4

12
1
5

13

1 2 3 4 1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 5 5 6 6 7 7 8 8 5 6 7 8 9
1
0

1
1

1
2

9 9
1
0

10
1
1

11
1
2

12
1
3

9
1
4

10
1
5

11
1
6

12
1
3

13
1
4

14

1 2 3 4 1 5 2 6 3 7 4 8 5 6 7 8 9 10 11 12 9 10

1 2 3 4 1 2 5 3 6 4 7 5 8 6 7 8 9 10 11 12 9 10

1 2 3 4 1 2 3 5 4 6 5 7 6 8 7 8 9 10 11 12 9 13 10 11

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12

Time

Device 1

Device 2

Device 3

Device 4

Time

Device 1

Device 2

Device 3

Device 4

Assign multiple stages to each 
device (interleaved schedule)

Backward PassForward Pass



MORE EFFICIENT PIPELINE SCHEDULES

175B GPT model
96 80-GB A100 GPUs

Large throughput increases at small
batch sizes, smaller at large batch sizes



HOW DO WE NAVIGATE THIS CONFIGURATION SPACE?

Degree of pipeline, tensor, 
and data parallelism

Global batch size

Pipelining schedule

Microbatch size

Each of these influence amount of 
communication, size of pipeline 

bubble, memory footprint

See our recent paper Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM



IMPLEMENTATION: MEGATRON-LM

▪ Built on top of PyTorch

▪ Supports various transformer models like GPT and BERT

▪ Good performance on smaller models (e.g., BERT-Base and BERT-Large) and smaller scales as well

Implementation available at https://github.com/nvidia/megatron-lm



RESOURCES FOR A DEEP DIVE

▪ https://nvidia.com/en-us/training/books/

▪ https://github.com/NVIDIA/DeepLearningExamples/tree/master/
PyTorch/Translation/Transformer

▪ https://github.com/NVIDIA/Megatron-LM

https://nvidia.com/en-us/training/books/
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer
https://github.com/NVIDIA/Megatron-LM



